The Atom-Bond Connectivity Index of Benzenoid Systems And Phenylenes

نویسندگان

  • Jianguang Yang
  • Fangli Xia
  • Hongyan Cheng
  • H. Y. Cheng
چکیده

The atom-bond connectivity (ABC) index is a recently introduced topological index, defined as ABC(G) = ∑ uv∈E(G) √ du+dv−2 dudv , where du (or dv) is the degree the vertex u (or v). The ABC index of benzenoid systems and phenylenes are computed, a simple relation is established between the atom-bond connectivity index of a phenylene and the corresponding hexagonal squeeze in this paper. Mathematics Subject Classification: 05C05, 05C12

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randi} Index of Benzenoid Systems and Phenylenes*

A new parameter, related to and easily determined from the structure of a benzenoid system and that of a phenylene – the number of inlets (r) – is introduced. The connectivity (Randi}) index of both benzenoid systems and phenylenes is then shown to depend solely on the number of vertices and on r. A simple relation is established between the connectivity index of a phenylene and of the correspo...

متن کامل

On Second Atom-Bond Connectivity Index

The atom-bond connectivity index of graph is a topological index proposed by Estrada et al. as ABC (G)  uvE (G ) (du dv  2) / dudv , where the summation goes over all edges of G, du and dv are the degrees of the terminal vertices u and v of edge uv. In the present paper, some upper bounds for the second type of atom-bond connectivity index are computed.

متن کامل

On generalized atom-bond connectivity index of cacti

The generalized atom-bond connectivity index of a graph G is denoted by ABCa(G) and defined as the sum of weights ((d(u)+d(v)-2)/d(u)d(v))aa$ over all edges uv∊G. A cactus is a graph in which any two cycles have at most one common vertex. In this paper, we compute sharp bounds for  ABCa index for cacti of order $n$ ...

متن کامل

A Note on Atom Bond Connectivity Index

The atom bond connectivity index of a graph is a new topological index was defined by E. Estrada as ABC(G)  uvE (dG(u) dG(v) 2) / dG(u)dG(v) , where G d ( u ) denotes degree of vertex u. In this paper we present some bounds of this new topological index.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011